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1.3 Problems NS-3

Topic of this homework: Pythagorean triplets, Pell’s equation, Fibonacci sequence

Pythagorean triplets

Problem # 1: Euclid’s formula for the Pythagorean triplets a, b, c is a = p2 − q2, b = 2pq, and
c = p2 + q2.

– 1.1: What condition(s) must hold for p and q such that a, b, and c are always positive and
nonzero?

Sol: p > q > 0 (strictly greater than) �

– 1.2: Solve for p and q in terms of a, b, and c.

Sol:

Method 1: Given a, c, one may find p, q via matrix operations by solving the nonlinear system of equations for p, q.

First solve linear system of equations for p2, q2:

[
a
c

]
=
[
1 −1
1 1

] [
p2

q2

]

Inverting this 2x2 matrix gives (the determinant ∆ = 2)

[
p2

q2

]
= 1

2

[
1 1
−1 1

] [
a
c

]
.

Thus p = ±
√

(a+ c)/2, q = ±
√

(c− a)/2.

Method 2: The algebraic approach is:

a+ c = (p2 − q2) + (p2 + q2) = 2p2

−a+ c = −(p2 − q2) + (p2 + q2) = 2q2,

Thus p =
√

(a+ c)/2, q =
√

(c− a)/2, where p, q ∈ N.

Method 1 seems more “transparent” than Method 2. �
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Problem # 2: The ancient Babylonians (ca. 2000 BCE) cryptically recorded (a, c) pairs of
numbers on a clay tablet, archeologically denoted Plimpton-322 (see 2.8).

– 2.1: Find p and q for the first five pairs of a and c shown here from Plimpton-322.

a c
119 169

3367 4825
4601 6649

12709 18541
65 97

Find a formula for a in terms of p and q.
Sol:

(a, c) = (119, 169) (p, q) = ±(12, 5)
(a, c) = (3367, 4825) (p, q) = ±(64, 27)
(a, c) = (4601, 6649) (p, q) = ±(75, 32)
(a, c) = (12709, 18541) (p, q) = ±(125, 54)
(a, c) = (65, 97) (p, q) = ±(9, 4)

�

– 2.2: Based on Euclid’s formula, show that c > (a, b).

Sol: c− a = (p2 + q2)− (p2 − q2) = 2q2

Because 2q2 is always positive, c > a
c− b = (p2 + q2)− 2pq = (p− q)2 > 0
Note that by the definition of p, q ∈ N, p > q. �

– 2.3: What happens when c = a?

Sol: Then its not a triangle since b = 0. The triangle is degenerate. �

– 2.4: Is b+ c a perfect square? Discuss.

Sol: b+ c = p2 + 2pq + q2 = (p+ q)2. Since p and q are integers, b+ c will always be a perfect square (
√
b+ c

will always be an integer).
�
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Pell’s equation:
Problem # 3: Pell’s equation is one of the most historic (i.e., important) equations of Greek
number theory because it was used to show that

√
2 ∈ I. We seek integer solutions of

x2 −Ny2 = 1.

As shown in Sec. 2.5.2, the solutions xn, yn for the case of N = 2 are given by the linear 2× 2 matrix recursion[
xn+1
yn+1

]
= 1

[
1 2
1 1

] [
xn
yn

]
with [x0, y0]T = [1, 0]T and 1 =

√
−1 = ejπ/2. It follows that the general solution to Pell’s equation for N = 2

is [
xn
yn

]
= (eπ/2)n

[
1 2
1 1

]n [
x0
y0

]
.

To calculate solutions to Pell’s equation using the matrix equation above, we must calculate

An = eπn/2
[
1 2
1 1

]n
= eπn/2

[
1 2
1 1

] [
1 2
1 1

] [
1 2
1 1

]
· · ·
[
1 2
1 1

]
,

which becomes tedious for n > 2.

– 3.1: Find the companion matrix and thus the matrix A that has the same eigenvalues as
Pell’s equation. Hint: Use Matlab’s function [E,Lambda] = eig(A) to check your results!
Sol: The companion matrix is

A =
[
1 2
1 1

]
�

– 3.2: Solutions to Pell’s equation were used by the Pythagoreans to explore the value of√
2. Explain why Pell’s equation is relevant to

√
2.

Sol: As discussed Sec. 2.5.2, as the iteration n increases, the ratio of the xn/yn approaches
√

2. �

– 3.3: Find the first three values of (xn, yn)T by hand and show that they satisfy Pell’s
equation for N = 2. Sol: See class notes (slide 9.4.2) for this calculation. � By hand, find the
eigenvalues λ± of the 2× 2 Pell’s equation matrix

A =
[
1 2
1 1

]
.

Sol: The eigenvalues are given by the roots of the equation (1 − λ±)2 = 2. Thus λ± = 1 ±
√

2 =
{2.1412,−.4142} �

– 3.4: By hand, show that the matrix of eigenvectors, E, is

E =
[
~e+ ~e−

]
= 1√

3

[
−
√

2
√

2
1 1

]
.

Sol: The eigenvectors ~e± may be found by solving

A

[
e1
e2

]
= λ±

[
e1
e2

]
→ (A− λ±I)

[
e1
e2

]
= 0

For λ+, this gives

0 =
[
1− (1 +

√
2) 2

1 1− (1 +
√

2)

] [
e1
e2

]
=
[
−
√

2 2
1 −

√
2

] [
e1
e2

]
which gives the relation between the elements of ~e+, e1, e2, as e1 =

√
2e2.

The eigenvectors are defined to be unit length and orthogonal, namely

1. ||~ek||2 = ~ek · ~ek = 1

2. ~e+ · ~e− = 0.

Once we normalize ~e+ to have unit length, we obtain the first eigenvector

~e+ = 1√
3

[
−
√

2
1

]
Repeating this for λ− gives

~e− = 1√
3

[√
2

1

]
Thus, the matrix of eigenvalues is

E = 1√
3

[
−
√

2
√

2
1 1

]
�

– 3.5: Using the eigenvalues and eigenvectors you found for A, verify that

E−1AE = Λ ≡
[
λ+ 0
0 λ−

]
Sol: Using the formula for a matrix inverse, we find

E−1 = 1
det(E)

[
e22 −e12
−e21 e11

]
= 3
−2
√

2
1√
3

[
1 −

√
2

−1 −
√

2

]
= −
√

3
2
√

2

[
1 −

√
2

−1 −
√

2

]
Thus

E−1AE = −
√

3
2
√

2

[
1 −

√
2

−1 −
√

2

] [
1 2
1 1

]
1√
3

[
−
√

2
√

2
1 1

]
= −1

2
√

2

[
1 −

√
2

−1 −
√

2

] [
(−
√

2 + 2) (
√

2 + 2)
(−
√

2 + 1) (
√

2 + 1)

]
=
[
1−
√

2 0
0 1 +

√
2

]
= Λ

�

– 3.6: Once you have diagonalized A, use your results for E and Λ to solve for the n = 10
solution (x10, y10)T to Pell’s equation with N = 2.
Sol: x10 = −3363 and y10 = −2378. Note this formulation gives the negative solution, but since the values for
n = 10 are real, when they are squared in Pell’s equation, it makes no difference whether they are negative or
positive. �
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Problem # 4: Here we seek the general formula for xn. Like Pell’s equation, the Fibonacci equation
has a recursive eigenanalysis solution. To find it we must recast xn as a 2× 2 matrix relationship and
then proceed, as we did for the Pell case.

– 4.1: Show that the Fibonacci sequence xn = xn−1 + xn−2 may be generated by[
xn
yn

]
=
[
1 1
1 0

]n [
x0
y0

]
,

[
x0
y0

]
=
[
1
0

]
. (NS-3.1)

– 4.2: What is the relationship between yn and xn?
Sol: This equation says that xn = xn−1 + yn−1 and yn = xn−1. The latter equation may be rewritten as yn−1 = xn−2.

Thus
xn = xn−1 + xn−2

as requested. �

– 4.3: Write a Matlab/Octave program to compute xn using the matrix equation above. Test your
code using the first few values of the sequence. Using your program, what is x40? Note: Consider
using the eigenanalysis of A, described by Eq. 2.5.18 of the text.

Sol: You can try something like:
function xn = fib(n)
A = [1 1; 1 0]; [E,D] = eig(A); xy = E*D∧n*inv(E)*[1; 0];
xn = xy(1);

Given the initial conditions we defined, x40 = 165, 580, 141. �

– 4.4: Using the eigenanalysis of the matrix A (and a lot of algebra), show that it is possible to
obtain the general formula for the Fibonacci sequence

xn = 1√
5

[(
1 +
√

5
2

)n+1

−
(

1−
√

5
2

)n+1]
. (NS-3.2)

– 4.5: What are the eigenvalues λ± of the matrix A?

Sol: The eigenvalues of the Fibonacci matrix are given by

det

[
1− λ 1

1 −λ

]
= λ2 − λ− 1 = (λ− 1/2)2 − (1/2)2 − 1 = (λ− 1/2)2 − 5/4 = 0,

thus λ± = 1±
√

5
2 = [1.618,−0.618]. �

– 4.6: How is the formula for xn related to these eigenvalues? Hint: Find the eigenvectors.

Sol: The eigenvectors (determined from the equation (A− λ±I)~e± = ~0, and normalized to 1) are given by

~e+ =

 λ+√
λ2

++1
1√
λ2

++1

 ~e− =

 λ−√
λ2
−+1
1√
λ2
−+1

 E =
[
~e+ ~e−

]
From the eigenanalysis, we find that[

xn
yn

]
= E

[
λn+ 0
0 λn−

]
E−1

[
1
0

]
=
[
e11 e12
e21 e22

] [
λn+ 0
0 λn−

]
1

(e11e22 − e12e21)

[
e22 −e12
−e21 e11

] [
1
0

]
.

Solving for xn we find that

xn = 1
(e11e22 − e12e21)

(
λn+e11e22− λn−e12e21

)
= 1

√
5√

(λ2
++1)(λn−+1)

[
λn+

(
λn+√

(λ2
+ + 1)(λn− + 1)

)
− λn−

(
λn−√

(λ2
+ + 1)(λn− + 1)

)]

= 1√
5

[
λn+1

+ − λn+1
−

]
�
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– 4.7: What happens to each of the two terms[(
1±
√

5
)
/2
]n+1

?

Sol: [(1−
√

5)/2]n+1 → 0 and [(1 +
√

5)/2]n+1 →∞ �

– 4.8: What happens to the ratio xn+1/xn?
Sol: xn+1/xn → (1 +

√
5)/2, because

(
(1−

√
5)/2

)n → 0 as n→∞ thus for large n, xn ≈ [(1 +
√

5)/2]n+1. �

Problem # 5: Replace the Fibonacci sequence with

xn = xn−1 + xn−2

2 ,

such that the value xn is the average of the previous two values in the sequence.

– 5.1: What matrix A is used to calculate this sequence?
Sol:

A =
[ 1

2
1
2

1 0

]
�

– 5.2: Modify your computer program to calculate the new sequence xn. What happens as n→∞?

Sol: As n→∞, xn → 2/3 �

– 5.3: What are the eigenvalues of the modified A? How do they relate to the behavior of xn as
n→∞? Hint: You can expect the closed-form expression for xn to be similar to Eq. NS-3.4.
Sol: The eigenvalues are λ+ = 1 and λ− = −0.5. From Eq. 2.5.18, the expression for An is

An = (EΛE−1)n = EΛnE−1 = E

[
λ+ 0
0 λ−

]n
E−1 = E

[
λn+ 0
0 λn−

]
E−1.

The solution is the sum of two sequences, one a constant and the other an oscillation that quickly goes to zero, changing
sign at each time step. As n→∞, λn+ = 1n → 1 and λn− = (−1/2)n → 0. The solution becomes

xn = 2
3
[
λn+ − λn−

]
= 2

3 [1n − (−1)n]→ 2
3 .

�

Problem # 6: Consider the expression

N∑
1
f2
n = fNfN+1.

– 6.1: Find a formula for fn that satisfies this relationship. Hint: It holds for only the
Fibonacci recursion formula.

Sol: Write this out for N and N − 1:

f2
1 + f2

2 + · · ·+ f2
N−1 + f2

N = fNfN+1

f2
1 + f2

2 + · · ·+ f2
N−1 = fN−1fN

Subtracting gives

f �2N =��fNfN+1 − fN−1��fN =��fN (fN+1 − fN−1)
fN = fN+1 − fN−1

Thus the relation only holds for the Fibonacci recursion formula. �
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CFA as a matrix recursion

Problem # 7: The CFA may be writen as a matrix recursion. For this we adopt a special
notation, unlike other matrix notations,a with k ∈ N:[

n
x

]
k+1

=
[
0 bxkc
0 1

xk−bxkc

] [
n
x

]
k

.

This equation says that nk+1 = bxkc and xk+1 = 1/(xk−bxkc). It does not mean that nk+1 = bxkcxk, as would
be implied by standard matrix notation. The lower equation says that rk = xk − bxkc is the remainder—namely,
xk = bx− kc+ rk (Octave/Matlab’s rem(x,floor(x)) function), also known as mod(x,y).

– 7.1: Start with n0 = 0 ∈ N, x0 ∈ I, n1 = bx0c ∈ N, r1 = x − bxc ∈ I, and
x1 = 1/r1 ∈ I, rn 6= 0. For k = 1 this generates on the left the next CFA parameter n2 = bx1c
and x2 = 1/r2 = 1/(x0 − bx0c) from n0 and x0. Find [n, x]Tk+1 for k = 2, 3, 4, 5.
Sol: If x0 = π, then n1 = bπc = 3, r1 = π − n1 = 0.14159 · · · , and x1 = 1/r1 ≈ 7.06:[

3
7.06251

]
1

=
[
0 bπc
0 1

π−bπc

] [
0
π

]
0

and for n = 2 [
7

15.99659

]
2

=
[

7
1

0.06251

]
2

=
[
0 7
0 1

7.0625−7

] [
3

7.06251

]
1

For n = 3, π3 = [n1;n2, n3] = [3; 7, 15]. Continuing n4 = b1.003418c = 1 and n5 = 292. �

aThis notation is highly nonstandard due to the nonlinear operations. The matrix elements are derived from the vector rather than multiplying
them. These calculation may be done with the help of Matlab/Octave.


